Author: ETH Zurich

  • 3D-printed minifactories

    There will soon be nothing that cannot be produced with 3D printing. However, the materials used for this process are still “dead matter” such as plastics or metals.

  • Unbalanced wind farm planning exacerbates fluctuations

    The expansion of renewable energy has been widely criticised for increasing weather-dependent fluctuations in European electricity generation. A new study shows that this is due less to the variability of weather than from a failure to consider the large-scale weather conditions across the whole continent: many European countries are unilaterally following national strategies to expand wind energy capacities without looking beyond their own backyard.It would be better, however, for individual countries to work together and to promote the expansion of wind capacity in other European regions that are currently making very little use of wind power.  Balancing capacity across the continent would effectively minimise the extreme fluctuations caused by the varied weather conditions that currently affect wind speeds. This is the conclusion reached by a group of weather and energy researchers from ETH Zürich and Imperial College London in a new study, which has just been published in the journal Nature Climate Change.

  • Testing a soft artificial heart

    It looks like a real heart. And this is the goal of the first entirely soft artificial heart: to mimic its natural model as closely as possible. The silicone heart has been developed by Nicholas Cohrs, a doctoral student in the group led by Wendelin Stark, Professor of Functional Materials Engineering at ETH Zurich. The reasoning why nature should be used as a model is clear. Currently used blood pumps have many disadvantages: their mechanical parts are susceptible to complications while the patient lacks a physiological pulse, which is assumed to have some consequences for the patient.

  • Selenium deficiency promoted by climate change

    As a result of climate change, concentrations of the trace element selenium in soils are likely to decrease. Because the selenium content of crops may also be reduced, the risk of selenium deficiency could be increased in many regions of the world. This was shown by a recent study which used data-mining to model the global distribution of selenium.Selenium is an essential micronutrient obtained from dietary sources such as cereals. The selenium content of foodstuffs largely depends on concentrations in the soil: previous studies have shown that low selenium concentrations are associated with high pH and oxygen availability and low clay and soil organic carbon content. In Europe, as is known from regional studies, selenium-poor soils are found particularly in Germany, Denmark, Scotland, Finland and certain Balkan countries.