Ship engine emissions adversely affect macrophages

In cooperation with colleagues of the University of Rostock, the University of Luxembourg, the Max Delbrueck Center for Molecular Medicine, the Karlsruhe Institute of Technology and the University of Eastern Finland, the Munich Scientists have now published the results in the journal PLOS ONE. In 2015 they already showed that exposure to particle emissions from heavy fuel oil (HFO) and diesel fuel (DF) adversely affects human lung cells and is responsible for strong biological responses of the cells ("How Ship Emissions Adversely Affect Lung Cells"). For example, inflammatory processes are triggered that may influence the development of interstitial lung diseases. Now the team led by Professor Ralf Zimmermann has found in further studies that macrophages are also influenced by the exhaust gases. These are much more sensitive than lung epithelial cells and therefore react more strongly to exposure. Zimmermann is speaker of the international consortium Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health (HICE), head of the cooperation group Comprehensive Molecular Analytics (CMA) at Helmholtz Zentrum Muenchen and head of the Department of Analytical Chemistry at the University of Rostock.

Offshore wind powers ahead as prices drop 30% below nuclear

The cost of offshore wind power in the North Sea is 30% lower than that of new nuclear, writes Kieran Cooke - helped along by low oil and steel prices, reduced maintenance and mass production. By 2030 the sector is expected to supply 7% of Europe's electricity. Output from the Dogger Bank project will be 1.2 GW (gigawatts) - enough to power more than a million homes. Next year, a 150-turbine wind farm off the coast of the Netherlands is due to start operating, and other schemes along the Dutch coast are in the works. Denmark, Sweden and Portugal are major investors in offshore wind, and China has ambitious plans for the sector. Wind farms - both onshore and offshore - are a key ingredient in renewable energy policy, and an important element in the battle against climate change. WindEurope, an offshore wind industry group, says that at the present rate of installations it's likely Europe will be producing about 7% of its electricity from offshore wind by 2030.Offshore wind developers benefit from falling costsBy some calculations, all this building work would seem to make little economic sense. Fossil fuel prices are low on the world market, and constructing offshore wind farms several kilometres out at sea, in often treacherous conditions, has traditionally been an expensive business.

Hummingbird vision wired to avoid high-speed collisions

Hummingbirds are among nature's most agile fliers. They can travel faster than 50 kilometres per hour and stop on a dime to navigate through dense vegetation.Now researchers have discovered that the tiny birds process visual information differently from other animals, perhaps to handle the demands of their extreme aerial acrobatics."Birds fly faster than insects and it's more dangerous if they collide with things," said Roslyn Dakin, a postdoctoral fellow in the UBC's department of zoology who led the study. "We wanted to know how they avoid collisions and we found that hummingbirds use their environment differently than insects to steer a precise course."Note: Watch a video of the experiments here: at UBC placed hummingbirds in a specially-designed tunnel and projected patterns on the walls to figure out how the birds steer a course to avoid collisions when they are in flight. They set up eight cameras to track the movement of hummingbirds as they flew through a 5.5-metre long tunnel.

Trees rely on a range of strategies to hunt for nutrient hot spots

On the surface, trees may look stationary, but underground their roots -- aided by their fungal allies -- are constantly on the hunt and using a surprising number of strategies to find food, according to an international team of researchers.The precision of the nutrient-seeking strategies that help trees grow in temperate forests may be related to the thickness of the trees' roots and the type of fungi they use, according to David Eissenstat, professor of woody plant physiology, Penn State. The tree must use a variety of strategies because nutrients often collect in pockets -- or hot spots -- in the soil, he added."What we found is that different species get nutrients in different ways and that depends both on that species' type of root -- whether it's thin or thick -- and that species' type of mycorrhizal fungi, which is a symbiotic fungus," said Eissenstat. "What we show is that you really can't understand this process without thinking about the roots and the mycorrhizal fungi together."Tree species with thicker roots -- for example, the tulip poplar and pine - avoid actively seeking nutrient hot spots and instead send out more permanent, longer-lasting roots. On the other hand, some trees with thinner roots search for nutrients by selectively growing roots that are more temporary, or by using their fungal allies to find hot spots.

A battery inspired by vitamins

Harvard researchers have identified a whole new class of high-performing organic molecules, inspired by vitamin B2, that can safely store electricity from intermittent energy sources like solar and wind power in large batteries.The development builds on previous work in which the team developed a high-capacity flow battery that stored energy in organic molecules called quinones and a food additive called ferrocyanide. That advance was a game-changer, delivering the first high-performance, non-flammable, non-toxic, non-corrosive, and low-cost chemicals that could enable large-scale, inexpensive electricity storage.While the versatile quinones show great promise for flow batteries, Harvard researchers continued to explore other organic molecules in pursuit of even better performance. But finding that same versatility in other organic systems has been challenging.

WSU researchers determine key improvement for fuel cells

Washington State University researchers have determined a key step in improving solid oxide fuel cells (SOFCs), a promising clean energy technology that has struggled to gain wide acceptance in the marketplace.The researchers determined a way to improve one of the primary failure points for the fuel cell, overcoming key issues that have hindered its acceptance. Their work is featured on the cover of the latest issue of Journal of Physical Chemistry C.Fuel cells offer a clean and highly efficient way to convert the chemical energy in fuels directly into electrical energy. They are similar to batteries in that they have an anode, cathode and electrolyte and create electricity, but they use fuel to create a continuous flow of electricity.Fuel cells can be about four times more efficient than a combustion engine because they are based on electrochemical reactions, but researchers continue to struggle with making them cheaply and efficiently enough to compete with traditional power generation sources.

New discoveries about photosynthesis may lead to solar cells of the future

For the first time, researchers have successfully measured in detail the flow of solar energy, in and between different parts of a photosynthetic organism. The result is a first step in research that could ultimately contribute to the development of technologies that use solar energy far more efficiently than what is currently possible.For about 80 years, researchers have known that photochemical reactions inside an organism do not occur in the same place as where it absorbs sunlight. What has not been known, however, is how and along what routes the solar energy is transported into the photosynthetic organism -- until now."Not even the best solar cells that we as humans are capable of producing can be compared to what nature performs in the first stages of energy conversion. That is why new knowledge about photosynthesis will become useful for the development of future solar technologies", says Donatas Zigmantas, Faculty of Science at Lund University, Sweden.

Glacial retreats linked to oceanic warming

A new study has found for the first time that ocean warming is the primary cause of retreat of glaciers on the Antarctic Peninsula. The Peninsula is one of the largest current contributors to sea-level rise and this new finding will enable researchers to make better predictions of ice loss from this region.The research, by scientists at Swansea University and British Antarctic Survey, is published in the journal Science this week (15 July). The study reports that glaciers flowing to the coast on the western side of the Peninsula show a distinct spatial correlation with ocean temperature patterns, with those in the south retreating rapidly but those in the north showing little change. Some 90% of the 674 glaciers in this region have retreated since records began in the 1940s.

Calcification: Does it pay off in the future ocean?

An international research team has calculated the costs and benefits of calcification for phytoplankton and the impact of climate change on their important role in the world's oceans.Single-celled phytoplankton play an important role in marine biogeochemical cycling, in marine food webs and in the global climate system. Coccolithophores are a particular group that cover themselves with calcium carbonate shields, known as coccoliths. Some wrap themselves in an impenetrable coat of coccoliths, some make coccoliths in the form of sharp spikes, some use them as parasols against the sun and some form funnel-shaped light collectors.But this requires a lot of energy -- and the price for the artful armour could rise further due to global change. With the help of a new model, the researchers analysed the energetic costs and benefits of calcification. The results, published in the current issue of the journal Science Advances, suggest that the ecological niche for calcifying algae will become narrower in the future.

Ptarmigan in Colorado have varied reproduction, not likely linked to warming trends

Animals that live at high elevations are often assumed to be at risk for extinction as habitats warm and change. But a new study led by Colorado State University researchers found that ptarmigan, which live in cold ecosystems, are not strongly affected by fluctuations in seasonal weather at two populations studied in Colorado.The results, published July 15 in the journal PLOS ONE, are surprising, given the general perception of alpine animal populations as vulnerable to recent climate warming, study authors said.Ptarmigan are grouse that live in cold ecosystems, such as alpine and tundra habitats, said Greg Wann, Ph.D. candidate in CSU's Graduate Degree Program in Ecology and a member of the Natural Resource Ecology Laboratory.The birds are well-known for changing colors seasonally. In late spring and summer, ptarmigan are brown, and in the fall, they molt into a white plumage to match the surrounding snow. The white-tailed ptarmigan is the smallest species of this type of grouse and is endemic to North America. It is the only ptarmigan that exists in Colorado.